Mail deze pagina
Printbare versie van deze pagina
Snel online aanmelden

Introduction to IBM SPSS Text Analytics for IBM SPSS Modeler (v16)

Doelgroep | Voorkennis | Onderwerpen | Data & prijzen | Aanmelden | Gerelateerd

Introduction to IBM SPSS Text Analytics for IBM SPSS Modeler (V16) teaches users how to analyze text data using IBM SPSS Modeler Text Analytics. Students will see the complete set of steps involved in working with text data, from reading the text data to creating the final categories for additional analysis. After the final model has been created, there is an example of how to apply the model to perform Churn analysis. Topics include how to automatically and manually create and modify categories, how to edit synonym, type, and exclude dictionaries, and how to perform Text Link Analysis and Cluster Analysis with text data. Also included are examples of how to create resource templates and Text Analysis packages to share work with other projects and other users.

Doelgroep cursus Introduction to IBM SPSS Text Analytics for IBM SPSS Modeler (v16)

Anyone who needs to analyze text data for the purpose of creating predictive models or reports based in part on text data.
Users of IBM SPSS Modeler Text Analytics.

Voorkennis

Wij adviseren onderstaande voorkennis:

  • You should have
  • General computer literacy
  • Practical experience with coding text data is not a prerequisite but would be helpful

Onderwerpen cursus Introduction to IBM SPSS Text Analytics for IBM SPSS Modeler (v16)

De cursus Introduction to IBM SPSS Text Analytics for IBM SPSS Modeler (v16) behandelt de volgende onderwerpen:

    • Introduction to Text Mining
    • An Overview of Text Mining in IBM SPSS Modeler
    • Reading Text Data
    • Linguistic Analysis and Text Mining
    • Creating a Text Mining Concept Model
    • Reviewing Types and Concepts in the Interactive Workbench
    • Editing Linguistic Resources
    • Fine Tuning Resources
    • Performing Text Link Analysis
    • Clustering Concepts
    • Categorization Techniques
    • Creating Categories
    • Managing Linguistic Resources
    • Using Text Mining Models
    • Appendix A:A The Process of Text Mining

    Klik hier voor een gedetailleerde onderwerpenlijst

Aanmelden voor cursus Introduction to IBM SPSS Text Analytics for IBM SPSS Modeler (v16)

Geïnteresseerd geraakt in deze opleiding, gegeven door ervaren docenten?
Dan kunt u zich eenvoudig en snel online aanmelden door op de "Boek nu" link onder de vestiging en methode van uw keuze te klikken.


LesmethodeKlassikaal
Cursusduur2 dagen
Cursuscode0A105G

Cursusdata

=Startgarantie

Locatie


Prijs

Info

Boeken
  • 9-mrt en 10-mrt.
  • Nieuwegein - Partner€1.480,00Vraag info aan
    (*)Amsterdam - Partner €1.480,00Vraag info aan
    (*)Op uw locatie?Vraag info aan

    (*) Hebt u een voorstel voor (andere) cursusdata? Neem contact op, wij plannen graag een extra sessie voor u!

    Ook partner worden van Pluspartner? Neem contact op met ons voor meer info.

    Gerelateerde cursussen

    In dezelfde cursusgroep bieden wij óók onderstaande opleidingen aan:


    Gedetailleerde onderwerpenlijst cursus Introduction to IBM SPSS Text Analytics for IBM SPSS Modeler (v16)

    Hieronder vind u een gedetailleerd overzicht met onderwerpen die in de cursus Introduction to IBM SPSS Text Analytics for IBM SPSS Modeler (v16) behandeld zullen worden:

      • Introduction to Text Mining
        • Describe text mining and its relationship to data mining
        • Explain CRISP-DM methodology as it applies to text mining
        • Describe the steps in a text mining project
      • An Overview of Text Mining in IBM SPSS Modeler
        • Explain the text mining nodes available in Modeler
        • Complete a typical text mining modeling session
      • Reading Text Data
        • Read text from documents
        • View text from documents within Modeler
        • Read text from Web Feeds
      • Linguistic Analysis and Text Mining
        • Describe linguistic analysis
        • Describe the process of text extraction
        • Describe categorization of terms and concepts
        • Describe Templates and Libraries
        • Describe Text Analysis Packages
      • Creating a Text Mining Concept Model
        • Develop a text mining concept model
        • Compare models based on using different Resource Templates
        • Score model data
        • Analyze model results
      • Reviewing Types and Concepts in the Interactive Workbench
        • Use the Interactive Workbench
        • Review extracted concepts
        • Review extracted types
        • Update the modeling node
      • Editing Linguistic Resources
        • Linguistic Editing Preparation
        • Develop editing strategy
        • Add Type definitions
        • Add Synonym definitions
        • Add Exclusion definitions
        • Text re-extraction to review modifications
      • Fine Tuning Resources
        • Review Advanced Resources
        • Adding fuzzy grouping exceptions
        • Adding non-Linguistic entities
        • Extracting non-Linguistic entities
        • Forcing a word to take a particular part of speech
      • Performing Text Link Analysis
        • Use Text Link Analysis interactively
        • Use visualization pane
        • Use Text Link Analysis node
        • Create categories from a pattern
        • Create text link rules
      • Clustering Concepts
        • Create clusters
        • Use visualization pane
        • Create categories from a cluster
      • Categorization Techniques
        • Describe approaches to categorization
        • Describe linguistic based categorization
        • Describe frequency based categorization
        • Describe results of different categorization methods
      • Creating Categories
        • Develop categorization strategy
        • Create categories automatically
        • Create categories manually
        • Use conditional rules to create categories
        • Assess category overlap
        • Extend categories
        • Import coding frames
        • Create Text Analysis Packages
      • Managing Linguistic Resources
        • Use the Template Editor
        • Save resource templates
        • Describe local and public libraries
        • Add libraries
        • Publishing libraries
        • Share libraries
        • Share templates
        • Backup resources
      • Using Text Mining Models
        • Explore text mining models
        • Develop a model with quantitative and qualitative data
        • Score new data
      • Appendix A:A The Process of Text Mining
        • Overview of Text Mining process

    Getoonde informatie onder voorbehoud, genoemde prijzen zijn exclusief BTW.

    Share |

     
    Informatie 
      Contact
      Cursusoverzicht
      Cursuskalender
      Bel mij!
      Brochure aanvragen
      Aanmelden voor nieuwsbrief
      Stel een vraag
     
     
    Cursuscategorieën